Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 968
Filtrar
1.
Neurosci Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636670

RESUMO

The field of aging biology, which aims to extend healthy lifespans and prevent age-related diseases, has turned its focus to the Callithrix jacchus (common marmoset) to understand the aging process better. This study utilized magnetic resonance imaging (MRI) to non-invasively analyze the brains of 216 marmosets, investigating age-related changes in brain structure; the relationship between body weight and brain volume; and potential differences between males and females. The key findings revealed that, similar to humans, Callithrix jacchus experiences a reduction in total intracranial volume, cortex, subcortex, thalamus, and cingulate volumes as they age, highlighting site-dependent changes in brain tissue. Notably, the study also uncovered sex differences in cerebellar volume. These insights into the structural connectivity and volumetric changes in the marmoset brain throughout aging contribute to accumulating valuable knowledge in the field, promising to inform future aging research and interventions for enhancing healthspan.

2.
Cells ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667286

RESUMO

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , AVC Isquêmico , Células-Tronco Neurais , Sinapses , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , AVC Isquêmico/patologia , AVC Isquêmico/terapia , Ratos , Sinapses/metabolismo , Masculino , Neuritos/metabolismo , Encéfalo/patologia , Isquemia Encefálica/terapia , Isquemia Encefálica/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/patologia
3.
J Neurosci ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649269

RESUMO

Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.Significance Statement Alzheimer's disease (AD) is a degenerative disease that causes cognitive decline. Familial AD is a severe form caused by mutations in the PSEN1, PSEN2, or APP genes. One carrier of the PSEN1 mutation did not develop dementia. This carrier also had a rare variant of the APOE gene, the Christchurch variant. The APOE Christchurch variant may protect against familial AD. The mechanism of this protection is not fully understood. In the present study, we have successfully demonstrated that the APOE Christchurch variant suppresses the propagation of tau and exhibits a diminished capacity to convert native astrocytes into reactive astrocytes. These significant findings contribute novel insights to the field of the APOE gene and AD research.

4.
Sci Rep ; 14(1): 8316, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594386

RESUMO

Animal models of brain function are critical for the study of human diseases and development of effective interventions. Resting-state network (RSN) analysis is a powerful tool for evaluating brain function and performing comparisons across animal species. Several studies have reported RSNs in the common marmoset (Callithrix jacchus; marmoset), a non-human primate. However, it is necessary to identify RSNs and evaluate commonality and inter-individual variance through analyses using a larger amount of data. In this study, we present marmoset RSNs detected using > 100,000 time-course image volumes of resting-state functional magnetic resonance imaging data with careful preprocessing. In addition, we extracted brain regions involved in the composition of these RSNs to understand the differences between humans and marmosets. We detected 16 RSNs in major marmosets, three of which were novel networks that have not been previously reported in marmosets. Since these RSNs possess the potential for use in the functional evaluation of neurodegenerative diseases, the data in this study will significantly contribute to the understanding of the functional effects of neurodegenerative diseases.


Assuntos
Callithrix , Doenças Neurodegenerativas , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
5.
Commun Biol ; 7(1): 413, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594382

RESUMO

Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ataxias Espinocerebelares , Animais , Humanos , Camundongos , Citocinas , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos Transgênicos , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ubiquitinas
6.
Heliyon ; 10(4): e26391, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434080

RESUMO

In diffusion magnetic resonance imaging, oscillating gradient spin echo (OGSE) has an extremely short diffusion time if motion probing gradient (MPG) is applied to the waveform. Further, it can detect microstructural specificity. OGSE changes sensitivity to spin displacement velocity based on the MPG phase. The current study aimed to investigate the restricted diffusion characteristics of each OGSE waveform using the capillary phantom with various b-values, frequencies, and MPG phases. We performed OGSE (b-value = 300, 500, 800, 1200, 1600, and 2000 s/mm2) for the sine and cosine waveforms using the capillary phantom (6, 12, 25, 50, and 100 µm and free water) with a 9.4-T experimental magnetic resonance imaging system and a solenoid coil. We evaluated the axial and radial diffusivity (AD, RD) of each structure size. The output current of the MPG was assessed with an oscilloscope and analyzed with the gradient modulation power spectra by fast Fourier transform. In sine, the sidelobe spectrum was enhanced with increasing frequency, and the central spectrum slightly increased. The difference in RD was detected at 6 and 12 µm; however, it did not depend on the structure scale at 50 or 100 µm and free water. In cosine, the diffusion spectrum was enhanced, whereas the central spectrum decreased with increasing frequency. Both AD and RD in cosine had a frequency dependence, and AD and RD increased with a higher frequency regardless of structure size. AD and RD in either sine or cosine had no evident b-value dependence. We evaluated the OGSE-restricted diffusion characteristics. The measurements obtained diffusion information similar to the pulsed gradient spin echo. Hence, the cosine measurements indicated that a higher frequency could capture faster diffusion within the diffusion phenomena.

7.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474376

RESUMO

There is no choice other than rehabilitation as a practical medical treatment to restore impairments or improve activities after acute treatment in people with spinal cord injury (SCI); however, the effect is unremarkable. Therefore, researchers have been seeking effective pharmacological treatments. These will, hopefully, exert a greater effect when combined with rehabilitation. However, no review has specifically summarized the combinatorial effects of rehabilitation with various medical agents. In the current review, which included 43 articles, we summarized the combinatorial effects according to the properties of the medical agents, namely neuromodulation, neurotrophic factors, counteraction to inhibitory factors, and others. The recovery processes promoted by rehabilitation include the regeneration of tracts, neuroprotection, scar tissue reorganization, plasticity of spinal circuits, microenvironmental change in the spinal cord, and enforcement of the musculoskeletal system, which are additive, complementary, or even synergistic with medication in many cases. However, there are some cases that lack interaction or even demonstrate competition between medication and rehabilitation. A large fraction of the combinatorial mechanisms remains to be elucidated, and very few studies have investigated complex combinations of these agents or targeted chronically injured spinal cords.


Assuntos
Medicina , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Neuroproteção
8.
Inflamm Regen ; 44(1): 10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475915

RESUMO

Inflammatory responses are known to suppress neural regeneration in patients receiving stem cell-based regenerative therapy for spinal cord injury (SCI). Consequently, pathways involved in neurogenesis and immunomodulation, such as the hepatocyte growth factor (HGF)/MET signaling cascade, have garnered significant attention. Notably, various studies, including our own, have highlighted the enhanced recovery of locomotor functions achieved in SCI animal models by combining HGF pretreatment and human induced stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC) transplantation. However, these studies implicitly hypothesized that the functionality of HGF in SCI would be time consistent and did not elucidate its dynamics. In the present article, we investigated the time-course of the effect of HGF on SCI, aiming to uncover a more precise mechanism for HGF administration, which is indispensable for developing crystallizing protocols for combination therapy. To this end, we performed a detailed investigation of the temporal variation of HGF using the RNA-seq data we obtained in our most recent study. Leveraging the time-series design of the data, which we did not fully exploit previously, we identified three components in the effects of HGF that operate at different times: early effects, continuous effects, and delayed effects. Our findings suggested a concept where the three components together contribute to the acceleration of neurogenesis and immunomodulation, which reinforce the legitimacy of empirically fine-tuned protocols for HGF administration and advocate the novel possibility that the time-inconsistent effects of HGF progressively augment the efficacy of combined therapy.

9.
Nat Commun ; 15(1): 2496, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548776

RESUMO

Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.


Assuntos
Fenômenos Biológicos , Callithrix , Animais , Camundongos , Masculino , Proteoma/metabolismo , Proteômica , Sinapses/metabolismo
10.
PLoS One ; 19(2): e0297273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38300967

RESUMO

Currently, we can label the certain cells by transducing specific genes, called reporter genes, and distinguish them from other cells. For example, fluorescent protein such as green fluorescence protein (GFP) is commonly used for cell labeling. However, fluorescent protein is difficult to observe in living animals. We can observe the reporter signals of the luciferin-luciferase system from the outside of living animals using in vivo imaging systems, although the resolution of this system is low. Therefore, in this study, we examined the reporter genes, which allowed the MRI-mediated observation of labeled cells in living animals. As a preliminary stage of animal study, we transduced some groups of plasmids that coded the protein that could take and store metal ions to the cell culture, added metal ions solutions, and measured their T1 or T2 relaxation values. Finally, we specified the best reporter gene combination for MRI, which was the combination of transferrin receptor, DMT1, and Ferritin-M6A for T1WI, and Ferritin-M6A for T2WI.


Assuntos
Ferritinas , Imageamento por Ressonância Magnética , Animais , Genes Reporter , Ferritinas/genética , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento por Ressonância Magnética/métodos , Íons/metabolismo
11.
Inflamm Regen ; 44(1): 6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347645

RESUMO

BACKGROUND: Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected. METHODS: Using a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing. RESULT: After transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system's role in recovery. CONCLUSION: The combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.

12.
Mol Autism ; 15(1): 10, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383466

RESUMO

BACKGROUND: A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS: To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS: Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS: The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS: Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.


Assuntos
Transtorno do Espectro Autista , Citocinas , Feminino , Masculino , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Leucócitos Mononucleares/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/farmacologia , Transtorno do Espectro Autista/metabolismo , Células Cultivadas , Sexismo , Macrófagos/metabolismo , Granulócitos/metabolismo , Dendritos/metabolismo
13.
Stem Cell Reports ; 19(3): 383-398, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38366597

RESUMO

The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.


Assuntos
Células-Tronco Pluripotentes Induzidas , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular/genética , Transplante de Células-Tronco , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Medula Espinal , Terapia Genética , Recuperação de Função Fisiológica/fisiologia
14.
Spine Surg Relat Res ; 8(1): 22-28, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38343414

RESUMO

Spinal cord injury (SCI) is a devastating injury that causes permanent neurological dysfunction. To develop a new treatment strategy for SCI, a clinical trial of transplantation of human-induced pluripotent stem cell-derived neural precursor cells (NPCs) in patients in the subacute phase of SCI was recently initiated. The formation of synaptic connections with host neural tissues is one of the therapeutic mechanisms of cell transplantation, and this beneficial efficacy has been directly demonstrated using a chemogenetic tool. This research focuses on the establishment of cell therapy for chronic SCI, which is more challenging owing to cavity and scar formation. Thus, neurogenic NPC transplantation is more effective in forming functional synapses with the host neurons. Furthermore, combinatory rehabilitation therapy is useful to enhance the efficacy of this strategy, and a valid rehabilitative training program has been established for SCI animal models that received NPC transplantation in the chronic phase. Therefore, the use of regenerative medicine for chronic SCI is expected to increase.

15.
Inflamm Regen ; 44(1): 8, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419091

RESUMO

BACKGROUND: The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes. METHODS: To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca2+ imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APP V717L mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models. RESULTS: The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes. CONCLUSIONS: Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APP V717L mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.

16.
Commun Biol ; 7(1): 212, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378797

RESUMO

Children's secure attachment with their primary caregivers is crucial for physical, cognitive, and emotional maturation. Yet, the causal links between specific parenting behaviors and infant attachment patterns are not fully understood. Here we report infant attachment in New World monkeys common marmosets, characterized by shared infant care among parents and older siblings and complex vocal communications. By integrating natural variations in parenting styles and subsecond-scale microanalyses of dyadic vocal and physical interactions, we demonstrate that marmoset infants signal their needs through context-dependent call use and selective approaches toward familiar caregivers. The infant attachment behaviors are tuned to each caregiver's parenting style; infants use negative calls when carried by rejecting caregivers and selectively avoid neglectful and rejecting caregivers. Family-deprived infants fail to develop such adaptive uses of attachment behaviors. With these similarities with humans, marmosets offer a promising model for investigating the biological mechanisms of attachment security.


Assuntos
Callithrix , Poder Familiar , Criança , Lactente , Animais , Humanos , Poder Familiar/psicologia , Cuidadores/psicologia , Ansiedade , Pais/psicologia
17.
Regen Ther ; 25: 250-263, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38293585

RESUMO

Introduction: 17ß-Estradiol (E2) is a sex hormone that has been previously demonstrated to have neurotherapeutic effects on animal models of Alzheimer's disease (AD). However, clinical trials on E2 replacement therapy for preventing AD onset yielded inconsistent results. Therefore, it is imperative to clarify the therapeutic effects of E2 on human cells. In this study, we utilized induced pluripotent stem cells (iPSCs) derived from multiple AD donors to explore the therapeutic effects of E2 on the in vitro model of human cells. Methods: We conducted a systematic review and meta-analysis using a random-effects model of the previously reported AD clinical trials to summarize the effects of E2 replacement therapy on AD prevention. Subsequently, we induced iPSCs from the donors of the healthy control (1210B2 line (female) and 201B7 line (female)), the familial AD (APP V717L line (female) and APP KM670/671NL line (female)), and the sporadic AD (UCSD-SAD3.7 line (APOE ε3/ε3) (male), UCSD-SAD7D line (APOE ε3/ε4) (male), and TMGH-1 line (APOE ε3/ε3) (female)), then differentiated to neurons. In addition to the mono-culture model of the neurons, we also examined the effects of E2 on the co-culture model of neurons and astrocytes. Results: The meta-analysis of the clinical trials concluded that E2 replacement therapy reduced the risk of AD onset (OR, 0.69; 95 % confidence interval [CI], 0.53-0.91; I2 = 82 %). Neural models from the iPSCs of AD donors showed an increase in secreted amyloid-beta (Aß) levels in the mono-culture model and an astrogliosis-like phenotype in the co-culture model. E2 treatment to the neuronal models derived from the iPSCs enhanced neuronal activity and increased neurite complexity. Furthermore, E2 treatment of the co-culture model ameliorated the astrogliosis-like phenotype. However, in contrast to the previous reports using mouse models, E2 treatment did not change AD pathogenesis, including Aß secretion and phosphorylated tau (pTau) accumulation. Conclusion: E2 treatment of the human cellular model did not impact Aß secretion and pTau accumulation, but promoted neuronal plasticity and alleviated the astrogliosis-like phenotype. The limited effects of E2 may give a clue for the mixed results of E2 clinical trials.

18.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262737

RESUMO

Spinal cord injury (SCI) often results in various long-term sequelae, and chronically injured spinal cords exhibit a refractory feature, showing a limited response to cell transplantation therapies. To our knowledge, no preclinical studies have reported a treatment approach with results surpassing those of treatment comprising rehabilitation alone. In this study of rats with SCI, we propose a novel combined therapy involving a semaphorin 3A inhibitor (Sema3Ai), which enhances axonal regeneration, as the third treatment element in combination with neural stem/progenitor cell transplantation and rehabilitation. This comprehensive therapeutic strategy achieved significant improvements in host-derived neuronal and oligodendrocyte differentiation at the SCI epicenter and promoted axonal regeneration even in the chronically injured spinal cord. The elongated axons established functional electrical connections, contributing to significant enhancements in locomotor mobility when compared with animals treated with transplantation and rehabilitation. As a result, our combined transplantation, Sema3Ai, and rehabilitation treatment have the potential to serve as a critical step forward for chronic SCI patients, improving their ability to regain motor function.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Semaforina-3A , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Neurônios , Células-Tronco Neurais/transplante , Axônios , Medula Espinal , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia
19.
J Neurol Sci ; 456: 122851, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181653

RESUMO

BACKGROUND: We previously developed an optimized q-space diffusional MRI technique (normalized leptokurtic diffusion [NLD] map) to delineate the demyelinated lesions of multiple sclerosis (MS) patients. Herein, we evaluated the utility of NLD maps to discern the white matter abnormalities in normal-appearing white matter (NAWM) and the abnormalities' possible associations with physical and cognitive disabilities in MS. METHODS: We conducted a retrospective observational study of MS patients treated at our hospital (Jan. 2012 to Dec. 2022). Clinical and MRI data were collected; Processing Speed Test (PST) data were obtained when possible. For a quantitative analysis of the NLD maps, we calculated the NLD index as GVROI/GVREF, where GV is a mean grayscale value in the regions of interest (ROIs) and the reference area (REF; cerebrospinal fluid). RESULTS: One hundred-one individuals with MS were included. The lower corpus callosum and non-lesional WM NLD index were associated with worse Expanded Disability Status Scale (EDSS) and PST scores. The NLD indexes in the corpus callosum (p < 0.0001) and non-lesional white matter (p < 0.0001) were significantly reduced in progressive MS compared to relapsing-remitting MS. We categorized MS severity as moderate/severe (EDSS score ≥ 4 points) and mild (EDSS score < 4 points). The NLD indexes in the corpus callosum (p < 0.0001) and non-lesional white matter (p < 0.0001) were significantly lower in the moderate/severe MS group compared to the mild MS group. CONCLUSION: The NLD map revealed abnormalities in the non-lesional white matter, providing valuable insights for evaluating manifestations in MS patients.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
20.
Endocr J ; 71(2): 153-169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38191197

RESUMO

Obesity and aging are major risk factors for several life-threatening diseases. Accumulating evidence from both rodents and humans suggests that the levels of nicotinamide adenine dinucleotide (NAD+), a regulator of many biological processes, declines in multiple organs and tissues with aging and obesity. Administration of an NAD+ intermediate, nicotinamide mononucleotide (NMN), replenishes intracellular NAD+ levels and mitigates aging- and obesity-associated derangements in animal models. In this human clinical study, we aimed to investigate the safety and effects of 8-week oral administration of NMN on biochemical, metabolic, ophthalmologic, and sleep quality parameters as well as on chronological alterations in NAD+ content in peripheral tissues. An 8-week, single-center, single-arm, open-label clinical trial was conducted. Eleven healthy, middle-aged Japanese men received two 125-mg NMN capsules once daily before breakfast. The 8-week NMN supplementation regimen was well-tolerated; NAD+ levels in peripheral blood mononuclear cells increased over the course of NMN administration. In participants with insulin oversecretion after oral glucose loading, NMN modestly attenuated postprandial hyperinsulinemia, a risk factor for coronary artery disease (n = 3). In conclusion, NMN overall safely and effectively boosted NAD+ biosynthesis in healthy, middle-aged Japanese men, showing its potential for alleviating postprandial hyperinsulinemia.


Assuntos
Hiperinsulinismo , NAD , Masculino , Pessoa de Meia-Idade , Animais , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Leucócitos Mononucleares/metabolismo , Japão , Obesidade , Sono , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...